
Open Source Physically Based Rendering with

appleseed

François Beaune

Project Founder



appleseed

Fetch



appleseed



appleseed

• Open source rendering engine

• Designed for VFX and animation

• Targeted at individuals and small studios



appleseed

• Started in June 2009

• Small, professional team

• Not our main job



appleseed

• Pure CPU renderer

• Unidirectional path tracing

• Physically-based

• Highly programmable



appleseed

LIGHT TRANSPORT

Distributed Ray Tracing

Unidirectional Path Tracing

Stochastic Progressive Photon Mapping

Light Tracing

RENDERING MODES

Multi-pass rendering

Progressive rendering

Interactive rendering

Scene editing during rendering

Spectral rendering (31 bands)

RGB rendering

Automatic spectral / RGB switching

CAMERA MODELS

Pinhole camera

Spherical camera

Thin lens camera (depth of field)

Polygonal diaphragm shapes

Image-based diaphragm shapes

LIGHT SOURCE MODELS

Point light

Spot light

Gobos

Directional/parallel light

Mesh light

Purely diffuse emission profile

Cone-shaped emission profile

Image-based lighting

Latitude-longitude environment maps

Mirror-ball environment maps

Preetham physically-based day sky

Hosek & Wilkie physically-based day sky

Physically-based sun

REFLECTION MODELS

Lambertian BRDF (purely diffuse)

Specular BRDF (perfect mirror)

Specular BTDF (clear glass)

Oren-Nayar Microfacet BRDF

Ward Microfacet BRDF

Blinn Microfacet BRDF

GGX Microfacet BRDF

Microfacet BTDF (rough glass)

Anisotropic Ashikhmin-Shirley BRDF

Kelemen BRDF

Disney's Layered BRDF

Arbitrary mixture of BRDFs

MOTION BLUR

Camera motion blur

Transformation motion blur

Deformation motion blur

Arbitrarily number of motion steps

PRODUCTION FEATURES

Open Shading Language

OSL shader library

Disney's SeExpr expressions

Rule-based render layers

Hierarchical instancing

Per-instance visibility flags

Alpha mapping

Automatic color space conversions

Ray bias

Light Near Start

Max Ray Intensity

Dozens of diagnostic modes

INTEROPERABILITY

Windows, Linux and OS X (64-bit)

OBJ, Alembic, BinaryMesh (proprietary)

OpenEXR, PNG

OSL shaders

Gaffer integration

Maya integration

Blender integration

HACKABILITY

Fully open source, MIT license

Very clean code

CMake build system

Full featured C++ API

Full featured Python 2.x/3.x API

More than 1200 built-in unit tests

Hundreds of built-in performance tests

Rich, automatic functional test suite

PERFORMANCE

Multithreaded, scalable

SSE / SSE2 vectorization

Memory-bounded texture cache

Multiple Importance Sampling

Efficient handling of alpha maps

TOOLS

Graphical tool for scene edition

Command line renderer

Dropbox-based render farm tools

OSL compiler and tools





71.8 million triangles

2.4 GB of textures

Disney layered BRDFs

SeExpr expressions

Image-based lighting

Depth of field

Average workstation

Intel Core-i7 5820K (6-core)

16 GB of RAM









appleseed

• Modern
• Interactive

• Single pass

• Tessellation-free

• Flicker-free



appleseed

• Reliable
• Avoid (bad) surprises

• Avoid crashes

• Avoid regressions

• Value correctness

• Incremental change = incremental effect



appleseed

• Flexible
• Avoid arbitrary limitations

• Provide tons of public extension points

• Maximize programmability
• OpenShadingLanguage

• Disney’s SeExpr

• Full C++ API

• Full Python 2.x / 3.x API



appleseed

• Hackable
• Fully open source

• Liberal license (MIT) from the start

• Everything hosted on GitHub

• Development fully in the open

• Using only open source or free tools

• Welcoming, helpful, mature community



Team & Process

appleseed



François Beaune Esteban Tovagliari

François Gilliot Jonathan Topf Hans Hoogenboom Joel Daniels

Dorian Fevrier Haggi Krey Srinath Ravichandran Marius Avram



François Beaune Esteban Tovagliari

R&D



Srinath Ravichandran Marius Avram

GSoC ‘14 
Students



Jonathan Topf Hans Hoogenboom Joel Daniels

Haggi Krey

Exporters & 
Integrations

Esteban Tovagliari



François Beaune

François Gilliot Jonathan Topf

Fetch



appleseed

• Core practices and values
• Collective code ownership

• Continuous refactoring

• Pull requests reviews

• Unit tests

• End-to-end tests

• Performance regression tests



Selected Works

appleseed



Light & Dark (BBC Four Documentary)



Light & Dark (BBC Four Documentary)



Light & Dark (BBC Four Documentary)



Character designs by appleseed users



Fetch, a very short film



Fetch, a very short film



appleseed now fully integrated into Image Engine’s Gaffer

appleseed





Welcoming contributions!

appleseed



appleseed

Home
http://appleseedhq.net/

GitHub
https://github.com/appleseedhq/appleseed

Development Mailing List
https://groups.google.com/forum/#!forum/appleseed-dev

Twitter
https://twitter.com/appleseedhq



Making Fetch



Making Fetch

• Initiated “Project Mescaline” in June 2012

• Goals:
• Test & validate appleseed on a small production

• Showcase & promote appleseed

• Sharpen our skills

• Have fun with friends

• Constraints:
• Final render 100% appleseed

• Tiny budget



Making Fetch

• Small team:
• 1 for direction & art

• 1 for pipeline & render

• 1 for sound effects & soundtrack (late in project)

• Help from friends

• Strictly free-time / rainy days project

• Effort:
• Planned: 8 months

• Actual: 19 months 



Making Fetch

• “Fetch, a very short film”

• 2 minutes hand-animated short

• Targeted at kids

• Miniature look

• Fully rendered with appleseed





Making Fetch

• Pipeline

• Render Setup

• Render Farm

• Conclusion



Pipeline

Making Fetch



Making Fetch – Pipeline

• Modeling, animation, lookdev in 3ds Max
• Tool of choice for the artist

• Lookdev mostly with V-Ray
• Integrated in 3ds Max



Making Fetch – Pipeline

• Problem: no 3ds Max-to-appleseed exporter

• Writing a full-featured exporter for 3ds Max too big of a project

• Solution:

3ds Max FBX Maya appleseed



Making Fetch – Pipeline

• Problem: no 3ds Max-to-appleseed exporter

• Writing a full-featured exporter for 3ds Max too big of a project

• Solution:

3ds Max FBX Maya appleseed

MAXScript Python Python



Making Fetch – Pipeline

• FBX format would lose lots of information
• Area lights

• Gobos

• DOF parameters…

• Several custom scripts to remedy this
• 3ds Max side (MAXScript)

• Store various info into custom attributes

• Prepare the scene before FBX export

• Maya side (Python)
• Retrieve info from custom attributes

• Adjust materials



Making Fetch – Pipeline

• Initial lookdev mostly with V-Ray 3

• Materials translated to appleseed
• Automatic translation during export

• Lots of post-export tweaks
• Automatic tweaks via Python scripts





Render Setup

Making Fetch



Making Fetch – Render Setup

• Art direction called for:
• Miniature look = realistic lighting + shallow DOF

• Mostly forest shots with almost no direct illumination

• Millions of grass blades and tree leaves in nearly every shot
• All translucent (thin translucency)

• All using alpha cutouts

• Image-based lighting in 25% of the shots

• Many scenes with really strong motion
• Transformation and deformation



Making Fetch – Render Setup

• Art direction called for:
• Miniature look = realistic lighting + shallow DOF

• Mostly forest shots with almost no direct illumination

• Millions of grass blades and tree leaves in nearly every shot
• All translucent (thin translucency)

• All using alpha cutouts

• Image-based lighting in 25% of the shots

• Many scenes with really strong motion
• Transformation and deformation



Making Fetch – Render Setup

• Physically-based materials & lighting

• Unidirectional path tracing, 2 bounces

• 64-400 samples/pixel depending on DOF and MB

• Single pass, no baking whatsoever

• One AOV per light (4-6 lights per shot)

• Plus a few special AOVs
• Girl’s hair

• Wolf’s eyes…



Making Fetch – Render Setup

• Full HD resolution (1920x1080)

• 24 frames/second

• 2767 frames (~ 115 seconds)



Making Fetch – Render Setup

• 3120 individual scenes to render
• 2767 frames + a couple backgrounds rendered separately

• 32 GB of final render data
• OpenEXR textures (RLE-compressed)

• Proprietary geometry format (LZ4-compressed)

• Tens of thousands of files





Render Farm

Making Fetch



Making Fetch – Render Farm

• Obviously too much work for one or even a couple machines

• No money meant:
• Not buying additional machines

• Not renting a render farm

• Not paying for Amazon Web Services

• So?



Making Fetch – Render Farm

• Friends to the rescue!

• Challenges:
• 32 shots, tens of thousands of files, GB of data

• Friends all around the place in Europe

• Random machines

• Random OS

• Machines only available occasionally

• Many machines behind firewall / NAT

• No technical expertise or rendering experience for most of them



Solution:

DYI render farm based on Dropbox

Making Fetch – Render Farm



Use Dropbox as delivery channel,

and for command & control

Making Fetch – Render Farm



Making Fetch – Render Farm

DATA
Shared Dropbox Directory

FRAMES
Shared Dropbox Directory

Kim’s Computer
Render Node

Thomas’ Computer
Render Node

Michael’s Computer
Render Node

François’ Computer
Render Manager



Making Fetch – Render Farm

• Shared directory

• Assume Dropbox Basic accounts (free!) = 2 GB

• Hosts:
• appleseed binaries for Windows, Linux and OS X

• Data for one or multiple partial shots

DATA
Shared Dropbox Directory



Making Fetch – Render Farm

FRAMES
Shared Dropbox Directory

• Shared directory on Dropbox Pro accounts

• Hosts all rendered frames
• Ended up with 140 GB worth of OpenEXR files

• Only shared between team members



Making Fetch – Render Farm

Kim’s Computer
Render Node

Thomas’ Computer
Render Node

Michael’s Computer
Render Node

• A variety of 64-bit machines
• Windows Vista, 7, 8

• Linux

• OS X

• Mostly quad core machines

• Typically available nights and week-ends

• Render nodes run the render node script

• Users free to kill render node script at any time



Making Fetch – Render Farm

• Render nodes run a Python script:

Loop:

“Acquire” scene by appending a per-machine suffix to scene file

Render scene

Move rendered frame files to “frames” subdirectory in DATA

Move rendered scene file to “archive” subdirectory in DATA



Making Fetch – Render Farm

François’ Computer
Render Manager

• Underpowered Core i5 laptop

• Managing rendering:
• Upload/remove shot data as required

• Honor 2 GB size limitation of DATA at all times

• Move rendered frames from DATA to FRAMES

• Monitor and print render farm health, activity and progress

• Running 24/7





Making Fetch – Render Farm

• Render Manager Robustness
• “Rendering state” fully implicit

• Render manager free to start/stop/crash at any time



Making Fetch – Render Farm

• Render Nodes Robustness
• Not all geometry files or textures available to render given scene

• On Windows: appleseed crash = Windows Error Reporting Message Box



Making Fetch – Render Farm

• Advantages
• Easy for friends to join & participate

• Reliable transport of scene data and rendered frames

• Easy to add/remove render nodes

• Easy to update new appleseed binaries

• Easy to analyze performance and crashes of render nodes 

• Eventually quite robust





Conclusion

Making Fetch





Making Fetch – Conclusion

• Special developments
• Efficient handling of massive number of alpha cutouts

• Dropbox-based render farm tools

• Vast improvements to Maya-to-appleseed exporter (mayaseed)

• Everything has been released



Making Fetch – Conclusion

• appleseed one of the most reliable component of the pipeline

• Did not have to worry about:
• Flickering

• Glitches in the middle of a shot

• Unpredictable catastrophic slowdown



Making Fetch – Conclusion

• Only two questions:
• What render settings?

• How long will it take?



Making Fetch – Conclusion

• What would we do differently today?
• Export Alembic files from 3ds Max

• Lookdev in Gaffer

• Real hair?

• OSL shaders?



Making Fetch – Conclusion

• Published on Vimeo

• Picked up by many big animation channels, ended up on YouTube

• Great reception on the web

• Some really nice articles written about the project



Making Fetch – Conclusion

• Official TIFF Kids 2015 selection!



Thank you!



Questions?



Extras
There’s never enough!



Additional References

Direct Ray Tracing of Full-Featured Subdivision Surfaces with Bezier Clipping
http://jcgt.org/published/0004/01/04/



appleseed

• Many important features still missing
• Volume rendering

• Subsurface scattering

• Subdivision surfaces

• Displacement

• Robust, complete, performant Maya integration

• Documentation




